Search This Blog

SEMINAR TOPICS AND SEMINAR REPORTS

Saturday 6 February 2010

Hurd

When we talk about free software, we usually refer to the free software licenses. We also need relief from software patents, so our freedom is not restricted by them. But there is a third type of freedom we need, and that's user freedom.
    Expert users don't take a system as it is. They like to change the configuration, and they want to run the software that works best for them. That includes window managers as well as your favourite text editor. But even on a GNU/Linux system consisting only of free software, you can not easily use the filesystem format, network protocol or binary format you want without special privileges. In traditional Unix systems, user freedom is severly restricted by the system administrator.
    The Hurd is built on top of CMU's Mach 3.0 kernel and uses Mach's virtual memory management and message-passing facilities. The GNU C Library will provide the Unix system call interface, and will call the Hurd for needed services it can't provide itself. The design and implementation of the Hurd is being lead by Michael Bushnell, with assistance from Richard Stallman, Roland McGrath, Jan Brittenson, and others.

Read more »

EXTREME ULTRAVIOLET LITHOGRAPHY

  Silicon has been the heart of the world's technology boom for nearly half a century, but microprocessor manufacturers have all but squeezed the life out of it. The current technology used to make microprocessors will begin to reach its limit around 2005. At that time, chipmakers will have to look to other technologies to cram more transistors onto silicon to create more powerful chips. Many are already looking at extreme-ultraviolet lithography (EUVL) as a way to extend the life of silicon at least until the end of the decade.
                       Potential successors to optical projection lithography are being aggressively developed. These are known as "Next-Generation Lithographies" (NGL's). EUV lithography (EUVL) is one of the leading NGL technologies; others include x-ray lithography, ion-beam projection lithography, and electron-beam projection lithography. Using extreme-ultraviolet (EUV) light to carve transistors in silicon wafers will lead to microprocessors that are up to 100 times faster than today's most powerful chips, and to memory chips with similar increases in storage capacity.

Read more »

BLUE RAY

Tokyo Japan, February 19, 2002: Nine leading companies today announced that they have jointly established the basic specifications for a next generation large capacity optical disc video recording format called "Blu-ray Disc". The Blu-ray Disc enables the recording, rewriting and play back of up to 27 gigabytes (GB) of data on a single sided single layer 12cm CD/DVD size disc using a 405nm blue-violet laser.
     By employing a short wavelength blue violet laser, the Blu-ray Disc successfully minimizes its beam spot size by making the numerical aperture (NA) on a field lens that converges the laser 0.85. In addition, by using a disc structure with a 0.1mm optical transmittance protection layer, the Blu-ray Disc diminishes aberration caused by disc tilt. This also allows for disc better readout and an increased recording density. The Blu-ray Disc's tracking pitch is reduced to 0.32um, almost half of that of a regular DVD, achieving up to 27 GB high-density recording on a single sided disc.

    Because the Blu-ray Disc utilizes global standard "MPEG-2 Transport Stream" compression technology highly compatible with digital broadcasting for video recording, a wide range of content can be recorded. It is possible for the Blu-ray Disc to record digital high definition broadcasting while maintaining high quality and other data simultaneously with video data if they are received together. In addition, the adoption of a unique ID written on a Blu-ray Disc realizes high quality copyright protection functions.

    The Blu-ray Disc is a technology platform that can store sound and video while maintaining high quality and also access the stored content in an easy-to-use way. This will be important in the coming broadband era as content distribution becomes increasingly diversified. The nine companies involved in the announcement will respectively develop products that take full advantage of Blu-ray Disc's large capacity and high-speed data transfer rate. They are also aiming to further enhance the appeal of the new format through developing a larger capacity, such as over 30GB on a single sided single layer disc and over 50GB on a single sided double layer disc. Adoption of the Blu-ray Disc in a variety of applications including PC data storage and high definition video software is being considered.

Read more »

Crusoe Processor

Mobile computing has been the buzzword for quite a long time. Mobile computing devices like laptops, webslates & notebook PCs are becoming common nowadays. The heart of every PC whether a desktop or mobile PC is the microprocessor. Several microprocessors are available in the market for desktop PCs from companies like Intel, AMD, Cyrix etc.The mobile computing market has never had a microprocessor specifically designed for it. 

The microprocessors used in mobile PCs are optimized versions of the desktop PC microprocessor. Mobile computing makes very different demands on processors than desktop computing, yet up until now, mobile x86 platforms have simply made do with the same old processors originally designed for desktops. Those processors consume lots of power, and they get very hot. When you're on the go, a power-hungry processor means you have to pay a price: run out of power before you've finished, run more slowly and lose application performance, or run through the airport with pounds of extra batteries. A hot processor also needs fans to cool it; making the resulting mobile computer bigger, clunkier and noisier. A newly designed microprocessor with low power consumption will still be rejected by the market if the performance is poor. So any attempt in this regard must have a proper 'performance-power' balance to ensure commercial success. A newly designed microprocessor must be fully x86 compatible that is they should run x86 applications just like conventional x86 microprocessors since most of the presently available software’s have been designed to work on x86 platform.
Crusoe is the new microprocessor which has been designed specially for the mobile computing market. It has been designed after considering the above mentioned constraints. This microprocessor was developed by a small Silicon Valley startup company called Transmeta Corp. after five years of secret toil at an expenditure of $100 million. The concept of Crusoe is well understood from the simple sketch of the processor architecture, called 'amoeba’. In this concept, the x86-architecture is an ill-defined amoeba containing features like segmentation, ASCII arithmetic, variable-length instructions etc. The amoeba explained how a traditional microprocessor was, in their design, to be divided up into hardware and software.
Thus Crusoe was conceptualized as a hybrid microprocessor that is it has a software part and a hardware part with the software layer surrounding the hardware unit. The role of software is to act as an emulator to translate x86 binaries into native code at run time. Crusoe is a 128-bit microprocessor fabricated using the CMOS process. The chip's design is based on a technique called VLIW to ensure design simplicity and high performance. Besides this it also uses Transmeta's two patented technologies, namely, Code Morphing Software and Longrun Power Management. It is a highly integrated processor available in different versions for different market segments.

Read more »