In recent years, the distribution of works of art, including pictures, music, video and textual documents, has become easier. With the widespread and increasing use of the Internet, digital forms of these media (still images, audio, video, text) are easily accessible. This is clearly advantageous, in that it is easier to market and sell one's works of art. However, this same property threatens copyright protection. Digital documents are easy to copy and distribute, allowing for pirating. There are a number of methods for protecting ownership. One of these is known as digital watermarking.
Digital watermarking is the process of inserting a digital signal or pattern (indicative of the owner of the content) into digital content. The signal, known as a watermark, can be used later to identify the owner of the work, to authenticate the content, and to trace illegal copies of the work.
Watermarks of varying degrees of obtrusiveness are added to presentation media as a guarantee of authenticity, quality, ownership, and source.
To be effective in its purpose, a watermark should adhere to a few requirements. In particular, it should be robust, and transparent. Robustness requires that it be able to survive any alterations or distortions that the watermarked content may undergo, including intentional attacks to remove the watermark, and common signal processing alterations used to make the data more efficient to store and transmit. This is so that afterwards, the owner can still be identified. Transparency requires a watermark to be imperceptible so that it does not affect the quality of the content, and makes detection, and therefore removal, by pirates less possible.
The media of focus in this paper is the still image. There are a variety of image watermarking techniques, falling into 2 main categories, depending on in which domain the watermark is constructed: the spatial domain (producing spatial watermarks) and the frequency domain (producing spectral watermarks). The effectiveness of a watermark is improved when the technique exploits known properties of the human visual system. These are known as perceptually based watermarking techniques. Within this category, the class of image-adaptive watermarks proves most effective.
In conclusion, image watermarking techniques that take advantage of properties of the human visual system, and the characteristics of the image create the most robust and transparent watermarks.
Digital watermarking is the process of inserting a digital signal or pattern (indicative of the owner of the content) into digital content. The signal, known as a watermark, can be used later to identify the owner of the work, to authenticate the content, and to trace illegal copies of the work.
Watermarks of varying degrees of obtrusiveness are added to presentation media as a guarantee of authenticity, quality, ownership, and source.
To be effective in its purpose, a watermark should adhere to a few requirements. In particular, it should be robust, and transparent. Robustness requires that it be able to survive any alterations or distortions that the watermarked content may undergo, including intentional attacks to remove the watermark, and common signal processing alterations used to make the data more efficient to store and transmit. This is so that afterwards, the owner can still be identified. Transparency requires a watermark to be imperceptible so that it does not affect the quality of the content, and makes detection, and therefore removal, by pirates less possible.
The media of focus in this paper is the still image. There are a variety of image watermarking techniques, falling into 2 main categories, depending on in which domain the watermark is constructed: the spatial domain (producing spatial watermarks) and the frequency domain (producing spectral watermarks). The effectiveness of a watermark is improved when the technique exploits known properties of the human visual system. These are known as perceptually based watermarking techniques. Within this category, the class of image-adaptive watermarks proves most effective.
In conclusion, image watermarking techniques that take advantage of properties of the human visual system, and the characteristics of the image create the most robust and transparent watermarks.
0 comments:
Post a Comment